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Abstract-This paper concerns a new approach to the investigation of non-linear behaviours of
heated rhombic plates. A new set ofdifferential equations in oblique co-ordinates have been derived
in this investigation. Numerical results showing central deflection parameters versus thermal load
functions have been computed for different skew angles O. For 0 = 0° the results obtained in the
present study are in excellent agreement with the known results. It is believed that the results
obtained for other different skew angles are completely new.

INTRODUCTION

Determination of thermal deflections in thin elastic plates, is of vital importance in cases
where the thermal stresses playa significant role. Although thermal deflections ofthin elastic
plates have been investigated by many authors (Aleck, 1949; Zizicas, 1952; Schneider, 1955;
Boley and Weiner, 1960; Forray and Newmann, 1960; Nowacki, 1962; Katayama et al.,
1967; Sarkar, 1968; Kaiuk and Pavlenko, 1971, 1972; Roychowdhury, 1972; Prabhu and
Durvasula, 1974; Matumoto and Sekiya, 1975), the literature on the large thermal deflec­
tions is somewhat sparse. The most interesting papers in this field are by Williams (1955,
1958) who quite elegantly carried out large deflection analysis for a plate strip subjected to
normal pressure and heating. Biswas investigated the large deflection of heated circular
plates under non-constant temperature (Biswas, 1974) and large deflections ofheated elastic
plates under uniform load (Biswas, 1975). The author followed Berger's equation in his
investigations. Another interesting paper in this field is by Banerjee and Dutta (1979), in
which investigation of non-linear behaviours of heated elastic plates under non-constant
temperatures has been carried out. The authors utilized a conformal mapping technique
along with Berger's hypothesis. Later on Banerjee proposed a new approach to the Large
Deflection analysis of thin elastic plates (Banerjee and Dutt, 1981) and afterwards carried
out quite elegantly the non-linear behaviours of polygonal plates under non-constant
temperatures (Banerjee, 1984). Following Banerjee's approach, another interesting paper
is by Sinharay and Banerjee (1985) on non-linear behaviours of heated spherical and
cylindrical shells, where the authors have achieved satisfactory results from the practical
point of view, Also, the works of Kamiya (1978) on the large thermal bending of sandwich
plates are very attractive and useful too.

All the investigations mentioned above deal with plate geometry either circular or
rectangular or in the shape of regular polygons. Only five papers (Katayama et al., 1967;
Kaiuk and Pavlenko, 1971, 1972; Prabhu and Durvasula, 1974; Matumoto and Sekiya,
1975) concerned with the study of thermal behaviours of skew plates are found in the
literature. But these papers do not consider the large deflections of plates. To the authors'
knowledge, no paper has been devoted to the investigations of non-linear behaviours of
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heated elastic skew plates having various applications in modern design, especially in the
space industry.

In this paper non-linear behaviours of simply-supported heated skew plates (taken in
rhombic form for simplicity of calculation) are investigated. Various numerical results
have been calculated showing central deflection parameters versus thermal load functions.
Whereas the results for skew angles other than 0° are believed to be new, the results for a
O'-skew angle are found to be in remarkable agreement with the already known results [see
Biswas (1975)].

ANALYSIS

Let us consider a rhombic plate of skew angle ewhose uniform thickness is hand
edge-length 2a. The material of the plate is considered isotropic having mass density p,
Young's modulus E and Poisson's ratio v. The origin of the co-ordinates is located at the
geometric centre of the plate. The deflections are consideed to be of the same order of
magnitude as the plate thickness, the edge-length being sufficiently large compared to the
thickness.

Now the uncoupled set ofdifferential equations in rectangular Cartesian co-ordinates,
governing the thermal behaviours of elastic plates [see Banerjee (1984)] is given by

where

(2)

A. = v2 for simply-supported elastic plates, and D = Eh 3/12(I-v 2
), the flexural rigidity of

the material of the elastic plate.
It is to be noted that in the derivation of eqns (I) and (2) in rectangular Cartesian co­

ordinates, the expression

(l_V2)[OV + ~ (OW)2J+ (ou + ov + ow. OW)2 . 1 _
oy 2 oy ox oy ox oy 2(1 +v)

in the total P.E. of the elastic plate (Banerjee, 1984) has been replaced by

As a consequence the partial differential equations governing the deflection of the plate
have become uncoupled and the two decoupled differential equations (1) and (2) have been
obtained.

In the present problem, the temperature is assumed to vary linearly w.r.t. the thickness
direction z. We also note that
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Fig. I. Plan form of skew plate and co-ordinate system.

T(x,Y,z) = ..o(x,Y) +zt'(x, y),

I"0 = HT1+T 2), .. = h(T\- T2),

T j = T(X,y,~) and T2 = ~X,Y, -~) (Banerjee, 1984).

707

Clearly '0 is the temperature in the middle plane and .. varies along the thickness of the
plate and hence .. =1= "0'

The plan of the skew co-ordinates (x I,Y j, (J) is shown in Fig. I. Clearly

x = Xl cos (J

and y = y\ +x\ sin (J (3)

are the co-ordinate transformation equations. Hence we have the following partial differ­
ential operators in oblique co-ordinates:

and

(4)

We now transform eqn (2) in oblique co-ordinates. For simply-supported plates the
boundary conditions are
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H' = 0 at XI = ±a and at YI = ±a,

at YI = ±a.

Then let us choose the deflection function for the simply-supported plate as

nXI nYI
W = wocos2;cos2;' (5)

which clearly satisfies the above-mentioned boundary conditions.
Now putting (5) in eqn (2) transformed in oblique co-ordinates and then integrating

the relation thus obtained, over the entire surface of the plate, we obtain the value of A in
the following form:

(6)

(As the normal displacement W is our primary interest, the in-plane displacements u, v
have been eliminated through integration by the choice of appropriate functions for such
displacements.) Again transforming eqn (1) in oblique co-ordinates, introducing eqns (5)
and (6) in the transformed equation and then applying Galerkin's error minimizing tech­
nique we get the following equation determining the central deflection parameter wo/h
depending on the thermal load function q'a4/Eh 4

:

A 2 4 (WO)3 768(1- v
2)(qla

4)
+4(8+49tan 8+29 tan 8)] h = n6 Eh 4 ' (7)

where

and

Equation (7) is applicable for the immovable edge condition of the simply-supported skew
plate. For the movable edge condition we have A = 0, so that eqn (7) takes the form:

3.1 2 4 (WO)3 768(1-v
2

) (
q1a

4)
+ 32 (8+49 tan 0+29 tan 0) h = n6 Eh4 ' (8)
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NUMERICAL RESULTS

Numerical results are presented here (Tables 1 and 2) in the tabular forms for S = 0,
0.1; () = 0°, 15°,30° and q'a4 /Eh 4 = 2, 4, 8, 10.

Table 1. S = 0, i.e. '0 = 0

(J = 0°

wo/h by present method

(J = 15° (J = 30°

wo/h by Berger's methodt

(Biswas,
1975)

(J = 0° (J = 15° (J = 30°

q'a4
Movable Immov- Movable Immov- Movable Immov- Immov- Immov- Immov-

Eh 4 edge able edge edge able edge edge able edge able edge able edge able edge

2 1.30156 0.91435 1.08167 0.82069 0.6269 0.53604 0.9013 0.79972 0.53671
4 2.1909 1.3131 1.85443 1.20857 1.14734 0.84631 1.29017 1.16888 0.848
8 3.23354 1.78866 2.8581 1.67119 1.89675 1.22355 1.75406 1.60902 1.2266

10 3.73498 1.9613 3.2243 1.83866 2.17977 1.3597 1.92254 1.76847 1.36324

t Berger's method has been applied to the present problem by neglecting e2, the second strain invariant in
the expression for total P.E. of the plate.

Table 2. S = 0.1. i.e. '0 #- 0

(J = 0°

wo/h by present method

(J = 15°

wo/h by Berger's method (e2 = 0)

(Biswas,
1975)

(J = 0° (J = 15° (J = 30°

q'a4
Movable Immov- Movable Immov- Movable Immov- Immov- Immov· Immov-

Eh 4 edge able edge edge able edge edge able edge able edge able edge able edge

2 1.32786 0.94985 1.10168 0.83899 0.63597 0.55925 0.94058 0.83515 0.56109
4 2.22082 1.34324 1.87831 1.20992 1.1604 0.86901 1.32336 1.19954 0.87185
8 3.35106 1.81316 2.88067 1.65221 1.9111 1.24302 1.781 1.63412 1.24706

10 3.76118 1.98415 3.24585 1.81269 2.19385 1.37799 1.94764 1.79188 1.38247

OBSERVATIONS AND CONCLUSIONS

From the numerical analysis of the undertaken problem the following observations
are made:

(i) The nature of the central deflection of a skew plate under thermal loading is the
same as that of the plate under mechanical loading, i.e. the central deflection increases
continuously with the increase ofloading for any edge condition of the skew plate, whether
movable or immovable.

(ii) The central deflection for the movable edge condition of the skew plate is always
greater than that for the immovable edge condition of the plate, for the same loading.

(iii) Irrespective of the edge condition, the central deflection decreases with the increase
in the skew angle.

(iv) The results for immovable edge conditions of the skew plate obtained by the
present method, agree well with the results obtained by Berger's method. It is to be noted
that Berger's method is a purely approximate method based on the neglect of e2. But the
present study is based on Banerjee's hypothesis which suggests a modified strain-energy
expression, and thus this model embraces less approximation (Banerjee and Dutt, 1981) than
that of Berger. Again Berger's method is meaningful only for immovable edge conditions of
the plates.

(v) The deflections increase with '0'
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The present method seems to be more advantageous than any other method found in
open literature. The main advantages are:

(I) The differential equations are decoupled and easy to solve;
(2) from a single cubic equation determining wo/h, the results could be obtained for

movable as well as immovable edge conditions; and
(3) unlike Berger's method it gives accurate results both for movable and immovable

edge conditions. Based on Banerjee's hypothesis a good number of works have
been carried out and in each case sufficiently accurate results have been obtained
[e.g. Banerjee and Dutt (1981), Banerjee (1984), Sinharay and Banerjee (1985) and
Ray et al. (1992, 1993)]. So in the present case also, the same degree of accuracy
was expected.
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